Program Specific Outcome and Course Outcome for B.Sc, Mathematics

Program Specific Outcome

- **PSO 1:** Think in a critical manner.
- **PSO 2:** Formulate and develop mathematical arguments in a logical manner.
- **PSO 3:** Familiarize the students with suitable tools of mathematical analysis to handle issues and problems in mathematics and related sciences.
- **PSO 4:** Acquire good knowledge and understanding to solve specific theoretical and applied problems in advanced areas of mathematics and statistics.
- **PSO 5:** Provide students/learners sufficient knowledge and skills enabling them to undertake further studies in mathematics and its allied areas on multiple disciplines concerned with mathematics.
- **PSO6:** Understand, formulate and use quantitative models arising in social science, business and other contexts
- **PSO 7:** Students will be aware of and able to develop solution oriented approach towards various Social and Environmental issues.

COURSE OUTCOMES

COURSE OUTCOMES						
Department of Mathematics						
SI		Course	Course	со		
No	Year	Code	Name	No.	Course Outcome	
			Theory of			
	2018-		Equations and		Describe the relation between roots and	
1	2019	MATH111	Trigonometry	CO1	coefficients.	
				CO2	Transform the equation through roots multiplied by a given number, increase the roots, decrease the roots, removal of terms	
				CO3	Develop the skills to solves problems based on algebra and trigonometry	
				CO4	Acquire the knowledge of teams and concepts used in theory of equations and trigonometry	
	2018-		Differential		Select and apply appropriate models and	
2	2019	MATH112	Calculus	CO1	differentiation techniques to solve problems	
				CO2	Students will be familiar with the techniques of differentiation of function with real variables	
				CO3	Understand the concept of curvature and calculate curvature when the curve is defined in Cartesian form	
					Apply derivative tests in optimization problems	
				GOA	appearing in social sciences, physical sciences,	
	2019			C04	Describe the various forms of equation of a plane	
2	2018-	MATH121	Analytical	CO1	straight line. Sphere. Cone and Cylinder.	
5	2017		Geometry – 3		To study the angle between a line and a plane, length	
				CO2	of perpendicular from a point to a line	
				CO3	Computation of shortest distance between two skew lines	
					To learn analytical geometry of 3 dimensions which include study of conics, planes, lines, sphere and	
				CO4	cone.	
4	2018- 2019	MATH122	Integral Calculus	CO1	Students will be familiar with the techniques of Integration of function with real variables	
				CO2	To develop an understanding of Triple Integral.	
				CO3	To understand the Integral Problem formulation and solution method.	
				CO4	To describe methods for solving Beta and Gamma Function	

COURSE OUTCOMES

	Department of Mathematics						
SI		Course	Course	СО			
No	Year	Code	Name	No.	Course Outcome		
					Relate abstract algebraic constructs to more familiar		
	2018-		Abstract		number sets and operations and see from whether		
5	2019	MATH231	Algebra	CO1	the constructs derive		
					Understand the basic concepts of group actions and		
				CO2	their applications		
					Know the fundamental concepts in ring theory such as		
				~~~	the concepts of ideals, quotient rings, integral		
				CO3	domains, and fields		
					The students will actively participate in the transition		
					of important concepts such homomorphisms &		
					isomorphisms from discrete mathematics to advanced		
	2010			CO4	abstract mathematics.		
	2018-	ΝΑΛΤΙΙΟΟΟ	Deel Analysia I	CO 1	Accuire the lunguiledge of vale Declassration		
6	2019	IVIA1 EZ 32	Real Analysis - I	COI	Acquire the knowledge of role Real number system		
					Understand the real number system and countable		
				CO2	concepts in real number system		
				CO3	Learn the concept of convergence of sequence and series of Real number system		
				005	Identify the continuity of a function defined on metric		
				CO4	spaces		
	2018			004	Understand the concents of Mathematical logic such		
7	2018-	MATH233	Logic and	CO1	as Connections, Concepts of Tautology etc.		
/	2017	100/11/200	Lattices	001			
				CO2	Study the concepts of Relations and Functions		
				002			
				CO3	Gains knowledge in Formal languages and Automata		
				005			
				CO4	Classify the concept of Lattices and Boolean Algebra		
					Explain the theory behind relations and functions and		
8	2018-				identify domains and images of functions, based on		
	2019	MATH241	Linear Algebra	CO1	the structures given		
					Understand the concepts of vector spaces, subspaces,		
				CO2	bases, dimension and their properties		
					Relate matrices and linear transformations, compute		
					eigenvalues and eigenvectors of linear		
				CO3	transformations		
					Learn properties of inner product spaces and		
				CO4	determine orthogonality in inner product spaces		

COURSE OUTCOMES						
Department of Mathematics						
SI		Course	Course	со		
No	Year	Code	Name	No.	Course Outcome	
					Understand several standard concepts of metric	
					spaces and their properties like openness, closedness,	
	2018-				completeness, Bolzano-Weierstrass property,	
9	2019	MATH242	Real Analysis -II	CO1	compactness, and connectedness	
					Learn the different definitions related to Riemann	
				CO2	Integrals	
				CO3	Understand the consequences of various mean value theorems for differentiable functions.	
				CO4	Improve the skill of problem solving in Real Analysis	
					Acquire the knowledge of concepts of the geometric	
					properties surfaces , three dimensional vectors , vector	
	2018-				valued functions , planes , lines and the cylindrical and	
10	2019	MATH243	Vector Calculus	CO1	spherical coordinate systems	
				CO2	Learn the graph, differentiate, integrate, and solve applied problems involving parametric equations and vector-valued functions.	
				CO3	Manipulate vectors to perform geometrical calculations in three dimensions.	
					Realize importance of Green, Gauss and Stokes'	
				CO4	theorems in other branches of mathematics.	
					The aim of this lab is to introduce you to the software	
					SciLab for numerical computations and in particular	
			Programming		familiarizing yourself with the ${ m SciLab}$ Desktop, basic	
	2018-		Using SciLab-		commands through the Command window and output	
11	2019	MATH351	Practical	CO1	through the Graph window.	
					Interpret and visualize simple mathematical	
				CO2	functions and operations thereon using plots/display	
					Analyze the program for correctness and	
				~	determine/estimate/predict the output and verify	
				CO3	it under simulation environment using SCILAB tools	
				CO4	Evaluate, analyze and plot results	
12	2018-		Complex	~ -	Understand basic complex number system and	
	2019	MATH352	Analysis - I	CO1	varieties of operations, analyses and problems	
					Understand the significance of differentiability and	
					analyticity of complex functions leading to the Cauchy	
				CO2	Riemann equations.	
				000	Learn complex differentiation, Planer mappings,	
				003	analytic and narmonic functions, conformal mapping	
					Improve the skill of problem solving in Complex	
				CO4	Analysis	

COURSE OUTCOMES								
	Department of Mathematics							
SI		Course	Course	СО				
No	Year	Code	Name	No.	Course Outcome			
	2018-		Ordinary Differential		Understand the genesis of ordinary differential			
13	2019	MATH354	Equations	CO1	equations			
					Learn various techniques of getting exact solutions of			
					solvable first order differential equations and linear			
				CO2	differential equations of higher order			
					Use the techniques of finding Laplace transforms and			
				$CO^{2}$	inverse Laplace transforms of real functions and their			
				005	application in solving ordinary differential equations			
					erdinary differential equations to suggest passible			
					colutions of the day to day problems arising in			
				CO4	solutions of the day to day problems ansing in			
				04	Acquire the basic knowledge of probability aviews and			
					Acquire the basic knowledge of probability axions and			
	2010		Mathomatical		random variables as well as he familiar with common			
14	2018-	MATH256		COI	named discrete and continuous random variables			
14	2019	IVIATI 1550		COI	hamed discrete and continuous random variables			
					transformations of random variables and use these			
				CO2	techniques to generate data from various distributions			
					Understand the most common discrete and			
				~ ~ ~	continuous probability distributions and their real life			
				CO3	applications			
				~~ (	how to translate real - world problems into probability			
				CO4	models			
15	2018-19	MATH357	Programming using SCILAB	CO1	Develop programs in SCILAB			

CO2

CO3

CO4

using Scilab

Perform mathematical Modeling in SCILAB

To develop programs for 2-D graphics for Contour plots

Application in solving ordinary differential equations

COURSE OUTCOMES						
Department of Mathematics						
SI No	Year	Course Code	Course Name	CO No.	Course Outcome	
16	2018- 2019	MATH361	Programming Lab in Numerical methods-Practicals	CO1	Implement simple mathematical functions/equations in numerical computing environment such as MATLAB/ SCILAB	
				CO2	Develop and implement stable and accurate numerical methods to solve linear systems of equations and find roots of linear and non-linear eqns	
				CO3	Perform numerical interpolation, curve fitting, integration, and differentiation	
				CO4	Develop and implement stable algorithms to solve ordinary differential equations and simple partial differential equations.	
17	201819	MATH362	Complex Analysis -II	CO1	Acquire the knowledge of Complex Integration	
17				CO2	Learn the role of Cauchy Goursat theorem and Cauchy integral formula in evaluation of contour integrals	
				CO3	Understand the convergence, term by term integration and differentiation of a power series	
				CO4	Learn Taylor and Laurent series expansions of analytic functions, classify the nature of singularity, poles and residues and application of Cauchy Residue theorem	
18	2018-19	MATH364	Partial Differential Equations	CO1	Acquire the knowledge of PDE	
				CO2	Expose different techniques of finding solution of PDE	
				CO3	Apply a range of techniques to solve first & second order partial differential equations	
				CO4	Model physical phenomena using partial differential equations such as the heat and wave equations	
19	2018- 2019	MATH366	Mathematical Statistics - II	CO1	Perform correlation, regression analysis and appropriate statistical tests for real life situations	
				CO2	Explore small and large data-sets to create testable hypotheses and identify appropriate statistical tests	
				CO3	Apply the different sampling methods for designing and selecting a sample from a population.	
				CO4	Formulate null and alternative hypotheses and apply small, large sample and non-parametric tests in real life problems	
20	2018- 2019	MATH367	Numerical Methods	CO1	Obtain numerical solutions of algebraic and transcendental equations	
				CO2	Learn about various interpolating and extrapolating methods	
					Solve initial and boundary value problems in	
				CO3	differential equations using numerical methods.	
				CO4	Apply various numerical methods in real life problems	